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Abstract:  In passive enhancement cavities the achievable power level is
limited by mirror damage. Here, we address the design of robust optical
resonators with large spot sizes on all mirrors, a measure that promises to
mitigate this limitation by decreasing both the intensity and the thermal
gradient on the mirror surfaces. We introduce a misalignment sensitivity
metric to evaluate the robustness of resonator designs. We identify the
standard bow-tie resonator operated close to the inner stability edge as
the most robust large-mode cavity and implement this cavity with two
spherical mirrors with 600 mm radius of curvature, two plane mirrors and
a roundtrip length of 1.2 m, demonstrating a stable power enhancement
of near-infrared laser light by a factor of 2000. Beam radii of 5.7 mm

x 2.6 mm (sagittalx tangential }€ intensity radius) on all mirrors

are obtained. We propose a simple all-reflective ellipticity compensation
scheme. This will enable a significant increase of the attainable power and
intensity levels in enhancement cavities.
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1. Introduction

Passive optical resonators can be efficiently excited by light emitted from a single-frequency or
modelocked laser as its coherence allows for a constant phase relationship of the incident field
with the field inside the resonator. Under proper resonance conditions, energy is continuously
coupled to theenhancement cavifeC) and the power circulating in the cavity can be several
orders of magnitude larger than the input power. The enhancement is limited by the resonator
round trip losses and, in the case of pulsed light, by chromatic dispersion. In general the effi-
ciency of optical frequency conversion processes increases with the driving intensity and thus
the EC technique lends itself to the efficient conversion of laser light to short wavelengths in
the extreme-ultraviolet (XUV) or the THz spectral region.

Shortly after the invention of the laser, the potential of ECs was demonstrated for the efficient
conversion of continuous-wave radiation to its second harmonic [1]. Numerous further appli-
cations and a wide range of variations of this technique followed, including its extension to the
operation with ultrashort pulses (an overview is given in Section 1.2 of Ref. [2]). The resonant
enhancement of pulsed radiation is made possible by the comb-like structure of the spectrum
emitted by a modelocked laser which allows coupling each individual comb line to a cavity
resonance. In the time domain this means that the cavity round trip time is equal to a multiple
of the pulse repetition period. This makes ECs suitable for the enhancement of pulse trains with
repetition rates betweenl0 MHz and several GHz. Recently, average powers on the order of
a few kW [3-5] have been reached with near-infrared intracavity femtosecond pulses around
100 MHz with peak intensities exceeding'4@V/cn?. Higher power and intensity levels are,
however, impeded by intensity-related mirror damages. For a 80 MHz enhancement-cavity with
200 fs pulses the maximum obtainable average power was determined to be 18 kW [4].

One of the main motivations for the development of femtosecond ECs has been the genera-
tion of XUV radiation via high-order harmonic generation (HHG) [6, 7]. Here, the achievable
intensity levels are currently limited by ionization-related effects in the gas target [8, 9]. Re-
cently it has been shown that these effects can be efficiently mitigated by decreasing the du-
ration of the enhanced pulses [10]. A possible approach to designing highly reflecting mirrors
supporting the necessary bandwidth is employing materials with low band gaps (and thus high
refractive indices). However, this comes at the expense of a damage threshold which is signifi-
cantly lower than for high-band-gap materials [11]. Furthermore, the damage threshold fluence
decreases for a given material with the pulse duration [12]. To overcome the limitation of mir-
ror damage and enable a further scaling of the attainable power and intensity levels in these
systems, increasing the spot sizes on all mirrors is mandatory. The same strategy promises to
benefit other EC-assisted conversion processes, such as THz generation [13] or Thomson (in-
verse Compton) scattering experiments, where typically picoseconds pulses are used [14]. For
the latter, the number of generated X-ray photons increases linearly with the laser power.

The scope of this article is to investigate theoretically and experimentally the robustness
of different approaches for obtaining large beam sizes on the cavity mirrors. Based on the
well-known matrix formalism for the description of resonators, a new misalignment sensitivity
metric specifically for enhancement cavities is introduced in Section 2. Based on this, differ-
ent resonator designs with large beam sizes on all cavity optics are compared in Section 3. In
Section 4 the experimental implementation of these designs is presented and the standard bow
tie resonator, consisting of two spherical and two plane mirrors is identified as the most ro-
bust large-mode ring resonator. In Section 5 we discuss all-reflective schemes for astigmatism
compensation. Section 6 concludes the paper.
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2. Theoretical models

2.1. Misaligned stable resonators

In this paper we use thexd33 matrix formalism [15] for the analysis of planar passive resonators,
which extends the well-known ABCD-matrix formalism [16] by misaligned optical elements.
A system matriXM, describing a round trip through the (misaligned) resonator, can be obtained
by matrix multiplication of the individual elements. The system mditixeads:

A B Ax
M=|C D Aa]. (1)
0 0 1

The upper left Z 2 sub-matrix is the conventional ABCD matrix and thus allows for the calcu-
lation of the eigenmode if the cavity is stable, i.e-i2 < A+ D < 2 holds [16]. The misalign-

ment is described by the matrix elemefisandAa. For the system matrik, these quantities

can be interpreted as the offset and angle, respectively, of the optical axis of the unperturbed
resonato(0,0,1)" after one round trip through the resonator. Corresponding values for optical
elements such as lenses or mirrors can be found e.g. in [17]. We consider only the fundamen-
tal Gaussian mode, but the extension to higher-order modes is straightforward. Note that this
sub-matrix is independent of any misalignment in the frame of th@3natrix-formalism, i.e.

the eigenmode is not affected. This approximation holds only for small misalignments, e.g. for
small mirror tilts that do not significantly change distances between two elements.

At the stability edge, the eigenmode exhibits a divergent behavior, i.e. large spot sizes can be
obtained. Any misalignment of elements causes a change of the optical axis, defined as the ray
that reproduces itself after one roundtrip through the resonator. It can be calculated from the
elements of the system matiik as [15]

(1-D)Ax+BAa

0="% Ap @
1-A)Aa +CAXx
vp = (L0 o ©

Here,xg andVy denote the offset and the angle of the new optical axis, respectively, in a ref-
erence plane with respect to that of the unperturbed resonator. The displacement of the optical
axis diverges in general fé&x+ D = +2, i.e. at one of the stability edges, but not for the other
edge A+ D = —2). In [18], Silvestri et al. found, that the sensitivity for rod thermal lensing in
a ring resonator is minimized at this edge.

The stability can also be interpreted in terms of the Gouy phase. The accumulated Gouy
phasegsouy Of the fundamental mode for one round-trip through a stable resonator is given
by [19]

A+D
@Poouy = arccos(T) . 4)

At the stability edge with diverging alignment sensitiviy-{ D = +2), the Gouy-phase is-0

2nN, and at the other edge+ 271N, whereN is an integer. The accumulated Gouy phase shift
upon propagation through a focus (propagation distance much larger than the Rayleigh length)
is 1. Therefore, if we can subdivide a resonator iNtetrongly focused arms (corresponding to
@souy ~ TTin each arm) and collimated arms (correspondingdguy ~ 0) — as it is typical for
resonators at a stability edge — the total Gouy-phabliidn conclusion, for even numbers of
strongly focused arms, the alignment sensitivity diverges, while for odd numbers the resonator
is robust with respect to misalignment.
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2.2. Quantification of the alignment sensitivity for enhancement cavities

The effect of misalignment on the operation of a resonator depends on the application. In case of
lasers, i.e. resonators containing an active medium, metrics for the alignment sensitivity based
on the output power variation due to the overlap of the eigenmode with the pumped volume in
the active medium [20] and the variation of diffraction losses at finite apertures in the cavity
due to misalignment [21] are used. For enhancement cavities the physical situation is different:
light from an external source is coupled to the resonator and the coupling efficiency depends
on the spatial overlap between the incoming beam and the circulating field. Any perturbation
of the resonator alignment — either of the g-parameter, or in orientation of the optical axis
— also changes the overlap of the two beams. The change in overlap therefore is a physically
meaningful metric for the alignment sensitivity of enhancement cavities. As the overlap integral
is a conserved quantity upon propagation through lens-like media, it can be evaluated anywhere
in the cavity, although the interference between the two beams physically takes place at the
input coupler. This is a strong feature of this metric, as any perturbation can be mapped to a
single number (the change in overlap) that does not depend on a reference plane in the cavity.
The overlap can be calculated between the eigenrdgg (x,y) before and¥per(X,y) after

a perturbation. Mathematically, it is given by the overlap integral [22]:

2

U= /wmma|<x,y>w;;en<x,y>dxdy , (5)

whereWinital (X,y) andWper(X, y) are the normalized complex transverse field distributions.

We will use the 3x 3-matrix-formalism described above for calculating the initial and per-
turbed eigenmodes. Note that alternatively ray-tracing, geometrical analysis [23] or numerical
algorithms such as Fox-Li[24] can be used to evaluate U, in case the cavity or the perturbations
cannot be described byx33-matrices. The & 3-matrix-formalism describes two fundamental
types of perturbations. Longitudinal perturbations (described by the conventional ABCD for-
malism) only change the eigenmode and transverse perturbations (described by the misalign-
ment parameters in thex33 matrix) only change the orientation of the optical axis. Examples
for the former are lengths changes and thermal lenses and for the latter mirror tilts and lens
offsets. For transverse perturbations, the eigenmode with an xifaet a (small) tilvg (both
in x direction), but equal transverse field distribution, can be written as [22]

Wpert(X,y) = Winital (X — XOaY)eikVOXa (6)
with the wavenumbek = 271/A.

3. Cavity designs
3.1. Design considerations

Due to the fundamental requirement of a large resonator finesse, only optically stable resonators
are considered here. In the center of the stability range, the maximum spot size is proportional
to the cavity length. The achievable power inside the enhancement cavity is limited by the
damage threshold of the optics given by some fluéheeP/(cA) (optical powerP, speed of

light c and wavelengtid), this limits. Larger spot sizes on the mirrors and therefore a higher
power can only be obtained at a stability edge or in a longer cavity. As the cavity round-trip time
must be an integer multiple of the pulse repetition period, the length can be increased even for a
fixed repetition rate of the seeding laser, however at the expense of a narrower cavity resonance
linewidth. Therefore, operating the EC at a stability edge can be a more robust approach. To
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d

(a) Standard bow-tie (SBT) cavity (b) All-curved-mirror (ACM) cavity

Fig. 1. (a) Standard bow-tie (SBT) cavity consisting of two focusing mirrors and two plane
mirrors, operated close to the inner stability edge. (b) All-curved-mirror (ACM) cavity with
four equal focusing mirrors and two overlapping foci. The distahdenotes the geometric
separation between opposite curved mirrors. For the ACM cavity, an increasealsb
increases the cavity length, while for the SBT the distath@an be chosen in a certain
range.

improve the ratio of the intensity at the focus to that on the subsequent mirror assuming a
given focus size, weaker focusing mirrors with larger separation distance have to be used. This
maximum separation is limited by the cavity length, so this ratio might impose a lower bound
on the cavity length. Based on these considerations, we discuss cavity designs that allow for
an increase oall optics in the cavity simultaneously. In particular for HHG, a larger focus is
favorable, as the harmonic yield scales at least quadratically with the focus radius [25] and a
longer Rayleigh length is often advantageous for phase-matching in a tight focus regime [26].
We investigate two ring resonator designs: The standard bow-tie (SBT) Cavity (one arm is
strongly focused, the other is collimated) and the all-curved-mirror (ACM) resonator with four
focused arms, both shown in Fig. 1. These two resonators share the following features:

The angles of incidence on the mirrors are small, which implies only weak astigmatism
when using spherical optics.

Due to the symmetry with respect to the focal planes, the beam waist is always centered
between the curved mirrors for both the sagittal and the tangential plane, such that the
small astigmatism introduced by the non-zero angle of incidence on the spherical mirrors
manifests itself as a pure ellipticity of the eigenmode.

The cavities are planar, so there is no geometric polarization rotation. If the difference in
reflectivity for s- and p-polarized light can be neglected (as for small angles of incidence),
any incoming polarization is preserved.

For a given focus size, the diffraction limited fundamental Gaussian mode considered
here exhibits the largest possible focal volume (i.e. the volume, where the intensity is
larger than some threshold).

Further designs, that do not exhibit all of these features, are discussed in Section 3.4.

3.2.

The standard bow-tie cavity

The SBT of length. consists of two identical spherical mirrors (radius of curvaR)reeparated
by a distancal and some folding mirrors as shown in Fig. 1(a). The distahbetween the
focusing mirrors can be increased upt@® for a triangular three-mirror cavity. Provided that
R < L/4 holds, the SBT is stable f&® < d < L/2—+/L2—4RL/2. ForR > L/4 the outer
stability edge does not exist, so the cavity is stable up to the maximum possible didgtance
L/2. For larger separations, the two distandesdL — d are interchanged. Towards the inner
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stability edge d = R), the short arm is tightly focused and the long arm gets collimated, i.e.
the spot size can be increased on all mirrors simultaneously. As discussed in Section 2.1, the
alignment sensitivity does not diverge at this edge, because the round-trip Gouy phiadé is

the outer stability edge, both arms are focused (the Gouy-phagg,is@that the alignment
sensitivity diverges and the spot size only grows on the curved mirrors, but not necessarily on
the folding mirrors in between.

For a quantification of the transverse alignment sensitivity, we considgrraditilt of one
curved mirror in an astigmatism-free SBT and calculate the change in overlap over the entire
stability zone (by variation ofl) for a fixed cavity length and fixed radii of curvature of the
focusing mirrors. When using typical kinematic 1” mirror mounts, this small tilt introduces
a cavity length change of only about 50 nm. This effect of the misalignment on the absolute
angle of incidence on the curved mirrors and on the cavity length is negligible for the range
of parameters considered here. The result is shown in Fig. 2(a) where the beaw §l7e?-
intensity radius) on the curved mirror indicates the position in the stability zone. Each cavity
has a point of minimum sensitivity near, but not exactly at the smallest beam ragius
general, this point is not the center of the stability zone. By approaching the outer stability
edge (upper branch), the alignment sensitivity increases drastically, as the displacement of the
optical axis diverges. In this branch, short cavities are more sensitive, as a given beam radius
is obtained closer to the stability edge. Two SBT cavities of equal length, but with different
focusing geometries, exhibit the same sensitivity towards the outer stability edge, as can be
seen in the example of the 10 MHz cavities. By approaching the inner stability edge (lower
branch), the sensitivity only increases moderately. Interestingly, the curves for all resonators
converge towards the same inner edge, i.e. in this limit the alignment sensitivity depends only
on the spot size on the mirrors, but not on the cavity geometry.

As the size of the eigenmode exhibits a divergent behavior at both stability edges, here the
cavities are more susceptible to variations of the stability parameter. For a quantification of this
longitudinal sensitivity, we calculate the overlap of the eigenmode before and after the distance
d between two opposite curved mirrors (as defined in Fig. 1) is changed by some small value
Ad, see Fig. 2(b). This leads again to two branches, the upper one being that of the inner stability
edge. Equivalently, the overlap variation upon a change of the mirror curvature, as induced e.g.
by thermal lensing, can be considered. For the example of the 125 MHz cavity, the longitudinal
sensitivity increases by 7 orders of magnitude from the stability center to the point where the
beam radius on the mirrors reaches 5 mm. This sensitivity will ultimately limit the achievable
spot size. The longitudinal sensitivity decreases with increasing cavity length, as large spot
sizes can be obtained closer to the stability center. Thus, increasing the cavity length offers a
means to overcome limitations induced by the longitudinal sensitivity.

The above considered tilt ofirad typically results in a cavity lenght change of only about
50 nm, a value much smaller than the considered longitudinal misalignmenitrof Despite
the smaller perturbation, the change in overlap is larger in the transverse case for the cavities
shown in Fig. 2 at the inner stability edge. Therefore, the impact of mechanical vibrations with a
certain amplitude will perturb this cavity mainly due to transverse effects, making the transverse
alignment sensitivity the more important one. For the SBT the inner stability edge is expected
to be more robust than the outer one, as here the transverse sensitivity is much lower. However,
for perturbations that solely affect the cavity longitudinally (e.g. thermal lensing), the operation
at the outer stability edge might be advantageous.

3.3. All-curved-mirror cavity

The all-curved-mirror (ACM) cavity depicted in Fig. 1(b) can be considered as a ring version of
the concentric resonator. It consists of two adjacent pairs of identical curved mirrors separated
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Fig. 2. The figures show the alignment sensitivity of several cavities by means of the change
in overlapAU = 1—U after a perturbation as a function of the beam radius on a curved
mirror. (a) A curved mirror is tilted by an angle of.tad, (b) The distance is changed by

Ad =1pum.

by a distancel. For symmetry reasons, the spot sizes are the same on all mirrors. A partic-
ular feature of the ACM are the two crossing foci, which can be used e.g. for non-collinear
HHG [27, 28]. The beam sizes can be increased on all mirrors simultaneously by increasing
d towards the stability edge neaR2but here the number of strongly focused arms is even
(round-trip Gouy phase approaches)di.e. the alignment sensitivity diverges. There is no
other stability edge with non-divergent alignment sensitivity for this resonator. Note that the
double-bow-tie resonator suggested in [28] for non-collinear HHG also exhibits a diverging
alignment sensitivity at the inner stability edge, as the round-trip Gouy phase is 2

The longitudinal and transverse sensitivity for a ACM cavity with radius of curvature 300
mm (repetition rate around 125 MHz) near the stability edge at2R are plotted in Fig. 2.
The transverse sensitivity at this edge is the same as for the 125 MHz SBT cavity at its corre-
spondingA+ D = +2 edge, i.e. the more sensitive edge. The longitudinal sensitivity is slightly
worse than that of an 125 MHz SBT at the inner stability edge. When large spot sizes on all
cavity mirrors are desired, this design is disadvantageous in comparison with the SBT design
in terms of robustness. However, it should be noted that the ACM cavity might be useful for
applications where the effect on the position of the optical axis needs to be maximized for a
given perturbation, such as output coupling for cavity-dumping [29, 30].

3.4. Alternative designs

In the following, we list alternative approaches that also enable a decrease of the intensity on
the cavity optics, but do not satisfy at least on of the design criteria considered in this paper.
However, the alignment sensitivity of these designs can be readily evaluated with the metric
developed here.

* Quasi-imagindg31] and Bessel-Gauss-beafB&]: In these concepts, the circulating field
can have an on-axis intensity maximum near the focus and avoids an on-axis opening in
a mirror for output coupling of the frequency-converted light. As these beams are not
diffraction-limited, the ratio of the intensity in (or close to) the focus to the intensity on
a mirror is naturally higher for the same propagation distance. However, this is achieved
at the cost of a reduced focal volume.
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< Imaging resonatorf33]: These are degenerate resonators, where arbitrary field distribu-
tions are reproduced after one round-trip. Large spot sizes on the mirrors could be ob-
tained by coupling a large mode into the cavity.

» Obligue incidenceThe illuminated area on a mirror can also be increased by choosing
a large angle of incidence (AOI), as the area increases by a factmgAOl). This
requires the use of toroidal or off-axis parabolic mirrors. Also, dielectric mirrors are in
general polarization-discriminating for large AOI.

4. Experiments
4.1. Setup

We investigate two 125 MHz cavities, an ACM (R = 300 mm) operated closk=t®R and
an SBT (R = 600 mm) operated closede- R in order to determine whether or not the oper-
ation close to the stability edge is constrained by the alignment sensitivity and/or mechanical
vibrations in a laboratory environment. The cavities are tested in the setup shown in Fig. 3. We
lock a single-frequency} = 1064 nm non-planar ring oscillator (NPRO) [34] with the Pound-
Drever-Hall locking scheme [35] to each cavity. Two photodiodes monitor the signal reflected
by the input coupler. One is used to measure the power fraction coupled to the Kauity
the second one to obtain an error signal. The incoming beam is mode-matched to each cavity
(round beam with spot size 3 mm at the respective input coupler) and is not changed throughout
the experiments.

The enhancement factér of the incoming poweR,, is given byP;c/Pn Where the circu-
lating powerPc can be measured via the transmission through a cavity mirror with known
transmission. The cavity round trip power attenuation faéttinat accounts for all losses ex-
cept for those at the input coupler can be calculated accordiAgtd — K /E. The round trip
power loss is given by & A. This analysis allows to distinguish between the overlap and the
cavity losses (including diffraction losses at the mirror boundaries) as reasons for a change of
the enhancement while the eigenmode is varied and the input field is kept constant. The inten-
sity distribution at the surface of one of the mirrors is imaged to the CCD camera with known
magnification (calibrated with an aperture of known size). From the measured beam size we de-
termine the position in the stability zone. The beam elliptieity'wy, provides an independent
measurement, as the angles of incidence are known“(fo2#oth cavities).

wpro | oo |-\
Véo X ()

Fig. 3. Schematic of the experimental setup. NPRO: non-planar ring oscillator, EOM:
electro-optical modulator, PD: photodiode, PM: power meter, CCD: CCD camera, VCO:
voltage controlled oscillator.

4.2. Results

We locked the laser to each cavity at several positions in their stability zones and measured
the beam size and the ellipticity on a cavity mirror. The results are shown in Fig. 4 together
with theoretical curves calculated with the ABCD-matrix formalism. With the ACM cavity
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Fig. 4. Measured beam radii in both planes for the SBT and the ACM cavities while the
stability edge was approached. The theoretical values are obtained with the ABCD-matrix
formalism. For the SBT the long axis lies in the sagittal plane and for the ACM it lies in
the tangential plane.

the maximum beam radii (£*-intensity radius) in the two planes were 4 mm2.1 mm. At

this position in the stability zone, the step size of @rad of the motorized mirror mounts

did not suffice for a satisfactory alignment. This confirms the behavior predicted by theory,
as single steps already change the overlap by a few tens of percent. With the SBT cavity the
alignment was significantly less critical. A spot size of 5.7 mn2.6 mm could be achieved
without affecting the round trip attenuation. Even larger spots were obtained, however at the
cost of diffraction losses at the mirror boundaries (25 mm in diameter). In principle this can
be overcome by using larger mirrors. This, however, implies increased AOI, which further
increases the ellipticity. Compared to the cavity described in Ref. [4], which can be considered
as a benchmark for intensity-related power scaling limitations with a beam radius on the mirrors
of 1 mm, a spot area increase by a factor of 8 and 15 was achieved with the ACM and the SBT
cavity, respectively.

The RMS noise of the circulating power, transmitted through one of the cavity mirrors, was
analyzed in the 20 Hz — 600 kHz band. The perturbations that might affect this signal are
of two types: residual frequency noise of the laser relative to the cavity and variations of the
overlap between the incoming beam and the eigenmode. Any increase in relative RMS noise
towards the stability edge could therefore be attributed to the increased sensitivity of the cavity
to mechanical perturbations. However, for both cavities, for all measurement points and for
power enhancement factors ranging from 600 to 2000, the measured transmission signal RMS
was independent on the position in the stability zone, remaining better than 0.1 % relative RMS.

In conclusion, we have identified the transverse alignment sensitivity as the limitation for an
increase of spot size for the ACM cavity. For the SBT cavity, neither transverse, nor longitudinal
alignment sensitivity constituted limitations, as expected from theory. Besides that, even at the
stability edge no impact of the mechanical vibrations on the operation of the cavity could be
detected with the above described measurement sensitivity.

5. Astigmatic compensation

5.1. In-plane compensation using astigmatic elements

Spherical mirrors irradiated under a non-zero AOI, introduce astigmatism in a resonator, i.e. the
focus positions in the tangential and sagittal planes are different. By a proper choice of the AOI
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the astigmatism can be turned into a pure ellipticity. In particular, this is the case for identical
focusing mirrors with equal angles of incidence. Close to the stability edges, the ellipticity
diverges, i.e. the illuminated area is not as large as for a round beam.

Thus, it is highly desirable to compensate for the ellipticity. In lasers, Brewster cells (e.g. the
laser crystal) are usually employed for astigmatic compensation [36]. However, for high-power
ECs, any transmissive element introduces detrimental effects, such as damage, polarization
discrimination, dispersion and nonlinearities. However, the ellipticity can be compensated by
introducing a slight additional curvature to the surfaces of the cavity optics, i.e. with purely
reflective optics. Here, we propose three ways of astigmatic compensation for the SBT design
sketched in Fig. 1(a):

« Replacing two plane mirrors by two identical cylindrical mirrors with a weak curvature
(either convex in the tangential plane, or concave in the sagittal plane).

« Replacing the two spherical mirrors by two identical toroidal mirrors with a weak curva-
ture difference in the two planes.

« Both methods may be implemented by elastic deformation of the plane or curved mirrors,
respectively.

Using this scheme with the SBT at the inner stability edge, an eigenmode that is large and
round on all optics may be obtained. As symmetry with respect to the focal planes is preserved,
the focal positions are equal in the tangential and sagittal plane and there is no ellipticity. In
the following, we denote such an astigmatism-free SBT cavity close to the inner stability edge
"Large-Mode-Bow-Tie” (LMBT).

In Fig. 5(a), the beam radii of an SBT with 600 mm radius of curvature are shown with and
without astigmatic compensation. In this example, the two plane mirrors are replaced by two
cylindrical mirrors defocusing in the tangential plane with radius of curvature of -100 m. For
an AOI of 4.4°, the ellipticity is totally removed. Here the AOI was increased artificially, which
allows for the use of readily available cylindrical mirrors. Figure 5(b) shows the ellipticity
(calculated in the focus) as a function &f(as shown in Fig. 1) for different spot sizes. For
larger spot sizes a better alignment accuracy is required. With weaker cylindrical mirrors, the
compensation is achieved for smaller AOI, requiring less accuracy. Note that the compensation
does not change the type of the stability edge, i.e. the alignment sensitivity can be read off
Fig. 2.2 from the lower branch of the SBT. The only additional constraint is the alignment of
A as shown in Fig. 5(b). This all-reflective compensation scheme allows for a round beam on
all cavity optics even at the stability edge with commercially available mirrors and realistic
requirements on the alignment accuracy.

5.2. Non-planar cavities

In a non-planar cavity configuration, the transverse ellipticity of the eigenmode can be removed
by a proper choice of the angles of incidence on the spherical mirrors. Without the constraint
that the beam must propagate in a single plane during the entire roundtrip, axial symmetry
can be achieved rendering additional curved elements for ellipticity compensation unnecessary.
For a non-planar EC, however, the polarization of the circulating light depends on that of the
incoming light, on the geometric rotation due to the non-planar propagation and on the resonator
finesse [37,38]. While this feature could in principle be used for various applications, both the
theoretical description and the experimental handling of a non-planar cavity are more involved
than those of a planar cavity due to the lack of well-defined tangential and sagittal planes. The
non-planar case exceeds the scope of this paper and will be treated in a future publication.
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Fig. 5. (a) Beam radius of a 125 MHz SBT cavity as described in the text with and without
astigmatic compensation. The dotted red lines indicate the positions of the mirrors.

(b) Beam ellipticitywy /wy at the mirrors as a function of the distantas defined in Fig.

1 for different spot sizes.

6. Conclusion

A major limitation of power scaling of ultrashort pulses in state-of-the-art enhancement cavi-
ties (ECs) is mirror damage induced by intensity-related and/or thermal effects [4]. Here, we
addressed the design of robust ECs with large spot sizes on all optics, a measure that promises
to mitigate this limitation by decreasing both the intensity and the thermal gradient on the op-
tics’ surfaces. To quantify the sensitivity of ECs towards perturbations we evaluate the overlap
between the cavity eigenmodes before and after a perturbation. This metric enables the com-
parison of various cavity designs. In particular, it identifies the standard bow-tie (SBT) ring
resonator consisting of two spherical mirrors and several additional folding mirrors, operated
close to the inner stability edge, as the most robust approach to large-mode ECs. We investigated
two large-mode cavity designs experimentally: the above-mentioned SBT and an all-curved-
mirror (ACM) resonator consisting of 4 identical spherical mirrors, both with a repetition rate

of 125 MHz. The misalignment sensitivity predicted by the overlap metric is confirmed quali-
tatively by the behavior of the two resonators: while the ACM cavity can hardly be aligned with
standard mechanics for beam radii larger than 4 mm, the SBT configuration readily allows for
beam radii of 5.7 mm (only limited by the mirror size) without a considerably increased align-
ment difficulty compared to the center of the stability range. In our experiment, the illuminated
area on all mirrors was increased by a factor of 15 compared to the system described in [4]. At
the same position in the stability range, an additional factor of about 2 in area as well as a round
mode shape throughout the resonator would be obtained by compensating for the strong ellip-
ticity using cylindrical or toroidal mirrors. The design strategies and tools developed here are
expected to have a significant impact on the scaling of the attainable power and peak intensity
levels in ECs driven by ultrashort pulses and their applications.
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