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Hot electrons generated upon interaction of ultrashort, intense laser pulses with solid targets have
many applications in various fields of physics. In this paper a simple theory is developed which
allows calculation of the fraction of electrons which escape from the target and the altered electron
energy distribution at a distance from the target. The theory is worked out in planar and spherical
geometry. It is exact if the electrons are instantaneously generated. In planar geometry all particles
eventually return to the target. In spherical geometry, however, a fraction of the electrons are found

to escape and, moreover, the electron energy spectrum at large distances approaches an asymptotical
one. Two examples of initial electron distributions are treated in detail, viz., an exponential and a
Lorentzian distribution. €005 American Institute of PhysidDOI: 10.1063/1.1891025

I. INTRODUCTION particle trajectories, electron densities, escape probabilites,
and electron spectra were calculatéd®

The effect of hot-electron generation by interaction of a  |n spherical geometry the equation of motion together
high-intensity laser pulse with a solid target has receivedvith the Poisson equation cannot be solved analytically.
considerable attention in recent ye&r§.This is because However, it will be shown that energy considerations allow
laser-generated ultrashort electron bursts may have a numbefie to calculate the fraction of electrons propagating beyond
of applications, such as in laser fusion, x-ray lasers, generay certain distance from the target and derive the electron
tion of ion beams, material science, and femtosecisd  spectrum. The result of these calculations shows that the
laser chemistry. spherical case is quantitatively but atpaalitativelydifferent

The emission of intense, ultrashort electron bunchesrom the planar case. The spherical geometry relations trans-
from a conductor into a vacuum exhibits interesting featuresgorm to those derived for planar geometry if the initial radius
While the electrons propagate into the vacuum region strongg the electrons is made infinitely large.
electrostatic self-fields slow them down and eventually pulla  The paper is organized as follows: Sec. Il gives a short
great part of them back to the target. At increasing distanc@ccount of the theory in planar geometry. In Sec. Il the
from the target fewer and fewer electrons are therefore eXtheory is worked out in spherical geometry. In Sec. IV simple
pected to be observed. In addition, the energy distribution ofnalytical expressions are derived for two specific electron

the electrons is expected to be significantly altered with regnergy distributions. In Sec. V the theory is applied to ex-
spect to the original electron spectrum. perimental situations.

In many experiments it is important to know what frac-
tion of the original electrons propagates beyond a certain
distance from the target and how the electron spectrum is
altered by the self-fields. For example, in irradiating samples
it is necessary to determine which kind of radiation—x raysll. INSTANTANEOUSLY RELEASED ELECTRONS
or electrons—dominates the dose received by the specime/ITH ARBITRARY ENERGY DISTRIBUTION
This question arises in investigations for developing opticdN PLANAR GEOMETRY
for fourth-generation light sources, ultrashort-pulse x-ray dif-
fraction experiments, and pumping of x-ray las&rs. Consider a planar pulse of electrons instantaneously re-
A complete theoretical assessment of the effects merleased from a conductor. The total areal density of the elec-
tioned above is only possible numerically, e.g., by means ofrons isN, and the coordinate in the direction of electron
particle-in-cell(PIC) simulations. It is shown here, however, propagation is denoted by A positive surface charge equal
that for very short electron pulses the effect of the self-fieldgo the charge of the electron cloud provides global charge
can be treated with a relatively simple analytical theory. Withneutrality and makes the field zero in the conductor. Thus,
laser pulses in the 10 fs range becoming available in moréhe field is zero in the conductor, sharply rises close to the
and more laboratoriésthis analytical treatment is gaining boundary to become positive at the surface itself, and then
increasing relevance to experiments. slowly decays along the electron cloud to become zero again
In previous work the analytical theory of an infinitely at the outermost particle.
short electron pulse was worked out in planar geometry. With  If electrons are instantaneously released they cannot
a Lagrangian coordinate for the electrons, the equation ofvertake each other and thus can be described by means of a
motion together with the Poisson equation was solved, antdagrangian coordinaté which may be defined as

1070-664X/2005/12(5)/052704/7/$22.50 12, 052704-1 © 2005 American Institute of Physics

Downloaded 11 May 2006 to 130.183.90.66. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


http://dx.doi.org/10.1063/1.1891025

052704-2 E. E. Fill Phys. Plasmas 12, 052704 (2005)

&) = Jm f(U')dU'. (1) U=Up- 47792X§Na, (5)
U

whereUj is the original energy of the electrons. Differenti-

Here U is the energy of the electrons arfdJ)dU is their ating with respect &, one obtains

normalized energy distribution.£(U) ranges from 0 to 1 dU _dU, 2
and gives the fraction of the electrons with an energy. & 0f 4meXN,. (6)

The higher the energy of the electrons the further they . )
will have propagated away from the conductor. Thus, thé?eahzm_g from Eq..(l). that the fraction of eIectron; in an
Lagrangian coordinatédenotes the fraction of electrons that €nergy intervatlU is given by <9¢/dU)dU, one obtains the
have propagated further out from the target. If the total areafn€rgy spectrum of the electrons by varyifgrom 0 to 1
density of electrons released from the target is giverNpy and plotting 9¢/dU=-1/(dU/¢) vs U from Eq.(5). Again,
then for an electron population with coordinatehe areal the equations become simple for integrable and invertable
density of electrons further out from the target is given by€lectron energy distributionsee Sec. V.
éN,. The Poisson equation yields for the electric fiedn

the vacuum region
I1l. ELECTRON ESCAPE AND ELECTRON SPECTRUM

E = 4meéN,, (2)  IN SPHERICAL GEOMETRY

wheree is the elementary electric charge. _ Consider hot electrons escaping from a target in the form
It follows from Eg. (2) that electrons with Lagrangian of g sphere with radius,. In spherical geometry the Poisson

coordinate¢ experience a constant decelerating force giversquation(the first Maxwell equationreads

by —4m€?éN, and thus at a distanoefrom target the loss of I

kinetic energy of that electron population is given by =, EE = 4mmne (7)

AU = 472N x. 3) o
wherer is the radial coordinate, is the local electron den-
sity, andE is the electric field. Integrating Ed7) with the

) ) ) boundary condition that the field be zero at infinity yields for
A. Fraction of electrons propagating beyond a certain the field at positiorr

distance from the target

. . 4me [~
In Refs. 14 and 15 the equation of motion of the elec- E= if r'2ndr’. (8)
r

trons is solved and the maximum distance is calculated by :

requiring the velocity to be zero. However, the distance arp;g equation can, of course, be directly derived from
particular electron populatioéi can separate from the target 5, ,55's Jaw in spherical coordinates. It states that for a cen-
can simply be calculated by equating the energy 0SS 10 thg sy mmetric system the field at any positiodepends only
original energyU(¢). This yields, for the maximum distance , the total charge outsideand not on the radial distribution
by which an electron with Lagrangian coordin@lenoves his charge. Again the Lagrangian coordingtis defined
away from the target, as the fraction of electrons found beyond

x=U(&)/4me?éEN,. (4) 4w (*
Here U(¢) is the inverse off(U) as defined in Eq(1). For £= Nefr e °dr ©
any electron energy distribution, E@) allows one to calcu-
late the fraction of electrons propagating beyond a distance WhereNe, the total number of electrons, is given by
from the target. In general, this must be done by numerically o0
integrating Eq.(1) and inverting it. However, simple alge- Ne:477f ner'2dr’. (10
r

braic relations are obtained for electron energy distributions 0

f(U) which can be integratEd and the integral function Osting Eq(8) the field can now be expressed by the Lagrang_
which can be analytically inverted. This is exemplified in thejan coordinate as

last part of the paper for an exponential and a Lorentzian

distribution. E(r) = e&NJr?. (11)
The energy loss of electrons with Lagrangian coordirgaite
given by

B. Electron energy spectrum at a distance from the *dr
target in planar geometry AU = ez‘fNef r_’rz (12)

The Lagrangian coordinate description allows calcula- o

tion of the energy spectrum of the electrons at any distance/hich can be integrated to yield

from the target: Since electrons with Lagrangian coordigate _ _

lose a kinetic energhU=4me’xéN, after they have propa- AU = &%Ne(Liro = 11r). (13
gated a distance away from the target, the remaining en- Thus, an equation analogous to E§) for the fraction of
ergy of these electrons is given by electrons propagating beyond a radiusan be written down

Downloaded 11 May 2006 to 130.183.90.66. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



052704-3 Ultrashort-pulse laser plasmas:... Phys. Plasmas 12, 052704 (2005)

by equating the energy loss to the original enetdfy), re- IV. SPECIFIC ELECTRON ENERGY DISTRIBUTIONS

sulting in In the following the formalism outlined above is applied

1Ur = Lirg— U(O)/(E%EN,). (14) to tV\_/o specific e_Iectron energy di;tri_buti_ons, viz., an expo-
nential and a shifted Lorentzian distribution. These distribu-

To relate the expressions for planar and spherical geometjon functions can be integrated and the integral function can
to each other, the total number of electrdwsis expressed be inverted, resulting in analytical formulae for the above

by the areal densiti}, of electrons at the emitting sphere by €xpressions.
The exponential distribution is the most common one

N, = 473N, (15  encountered in experimental work and derived in PIC simu-
lations. In experiments with solid targets it is found that the
Equation(14) now reads electron distribution can be described by an effective tem-
perature, which for laser intensities in the range of

1r = 1rg = U(O/(4me*ariN,). (16) 10810 W/cn? is 0.2-1 Me\?

. ) ) A Lorentzian distribution is useful in approximating dis-
This equation allows one to calculate the fraction of eleCyp, ions observed after the electrons have propagated
trons sepe_lratlng a certain dlstanc_e from the_target. Reallzmgwough a conducting solid. It can be further used to approxi-
that the dlstance_ from the spherical target is giverxby mate quasimonoenergetic distributions observed in recent ex-
-ro, One may write Eq(16) as periments(see Sec. V.

To simplify the expressions, dimensionless units are
used in the following by introducing a normalizing distance

. . . .. - -1 - — 13 H
This form of the equation shows that in the limit that the Xn= (47T eNa) ™ Here_re-ez/mcz-2.82>< 10~ cm is the
radius of the emitting sphere becomes infinite, @) trans- classical electron r_adlus. As asn e><_621mple, at a typical experi-
forms into the equation for the planar case: Fgrso, the ~Mental areal density ;= 10 cm one hasx,=2.8 um.
termry/(ro+x)—1 and Eq.(17) transforms into Eq(4). The dimensionless distances and radii will be denote by
The spectrum of the electrons at any distardeom the ~ =X/%» @ndR=r/x,.
target can be calculated by analogy with the planar geometry.

Inserting (15) in (13) the energy loss is written adU A Exponential electron energy distribution
=4me?EN X/ (ro+X) and the spectrum is again obtained by

xro/(ro+X) = U(&)/4me?éN,. (17)

varying ¢ and plotting 49U/ d&)~! vs U with The normalized exponential distribution readgU)
=1/kT, exp(-U/KkT,), wherekT, is the electron temperature.
U = Uy — 4me?ENXry/(rg + X) (18) Inserting this in Eq(1) and integrating yields
and &(U) = exp(— U/KTy), (21a
which is inverted to
U U,
ey = 9 A ENXrol(ro + X). (19) U(&) =-KT.In &, (21b

Inserting Eq.(21b) in Eq. (4), one obtains for the normalized
Again, if the radius of the emitting sphere becomes infinite,maximum distance in planar geometry
i.e., ro— o, then the equations transform to E¢s) and(6) KT, In ¢
of the planar case. X=—-—5—. (22)
A remarkable difference in the spherical and the planar mc ¢
cases arises if the distance from the target goes to infinity: Ifror X o it is seen thatt goes to zero, indicating that no
the planar case all electrons eventually come back to thgjectrons escape completely from the target.
target. This follows from Eq(3), which shows that at an In spherical geometry, with Eq21b) inserted in Eq.

infinite distance from the target the energy loss becomes in-g) the normalized maximum distancé is found to be
finite. In spherical geometry, however, for- part of the  given py

electrons escape from the target. From &), with x— <o,
one obtains for their fractiod.. the transcendental equation 1 1 + 1KTeIn¢ (23)
Ry+X Ry Rimc& ¢

Using this form of the equation, one can readily appreciate
Furthermore, in the planar case the energy spectrum of th&at atX— o the value of¢ does not become zero. A fraction
electrons continuously changes asis increased. In the & of the electrons escape from the target, a given by
spherical case, fox— o« the factorxry/(ro+x) in Egs.(18) In &, mc
and(19) goes tory and thus at a large enough distance from =-—Ro. (24)

& KTe

target the spectrum does not change any more. The
asymptotic spectrum is calculated by varyié@nd plotting  Figure 1 shows transmitted electron fractions vs normalized
—-(U/9&)t vs U with U=U,-4me?éN,r, and dU/9¢é  distance for several electron temperatures comparing planar
=(dUo/ 9€) —4me®N,r . and spherical geometry. It is seen how in planar geometry the

U(&)/(AmePéroN,) = 1. (20)
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FIG. 1. Transmitted electron fractions as a function of normalized distance-|, 2. Electron energy spectra at three distances from the téafigeen-

from the target in planar and spherical geometry. Dimensionless target rasionless X=0, 1, 2, 10. Planar and spherical geometry with dimensionless
dius Ry=5. The initial electron energy distributions are exponential with target radiusR,=5. The initial electron energy distributiciat X=0) is ex-
temperaturekT.=300 keV, 500 keV, and 1 MeV. For an areal electron ponential with a temperature of 500 keV. Spherical spectra are drawn dotted.

density N,=10'° cm?, X=100 corresponds to a distance of 280 from  The asymptotic spectrum for spherical geometry is also shaashed line
target andR,=5 corresponds to radius of the spherical emitter ofui% termed sphs).

fraction of electrons continuosly decreases, whereas in

spherical geometry it approaches a constant value. getic electrons was predicted by simulatithand recently
To calculate the electron spectrum in planar geometryobserved in experimenté™™ After some straightforward

Eg. (21b) is inserted in Eqgs(5) and(6). The equations for calculation the normalized form of the shifted Lorentzian is

the spectrum become found to be
U=-kT,In £- m&eX (253
e =07 2
and 1+ 4@
oU w
T KTJ& +mEX. (25D ith the normalization constant
In the spherical case E@21b) is inserted in Eqs(18) and C=4/(mwB), (29
(19), yielding the equations for the spectrum where B=1+(2/m)tamr}(2U./w). In these equationsl, is
_ _ Ro the energy of the maximum anal is the full width at half
U=-kTeln ¢ mCz§XR0+X’ (263 maximum (FWHM). Inserting Eq.(28) into Eqg. (1) and in-
tegrating results in the relation
Y KTJé+ mex& (26b) 1 2. _,2U-Uy
dE Ro+ X' §(U)=§ 1-—tan"—|, (30
T w
For X—c th h ical
or o the spectrum approaches an asymptotical Om\a/vhich can be inverted to yield
given by
U=-kT.In f—mcszO, (279 U(f):UC+\évtan[g(l—B§)] (32)
aJ
"9 =kTJé+mMCR,. (27  and
. . . JuU Wit B
Figure 2 shows electron energy spectra at various distances — =-— . (32
for an original exponential distribution witkT,=500 keV. 9% 4 co Z(l -B¢) ‘
The spectrum for the planar case is seen to change gradually 2

with distance, whereas the spectrum for spherical geometr;

approaches an asymptotic form. E/Jsmg Eq.(31) in Eq. (4) the electron escape fraction for the

planar case is readily obtained as

B. Shifted Lorentzian distribution X = {Uc + V—vtan{ 7_7(1 - Bg)] }/mczg. (33)
2 2

This distribution is symmetric around its maximum. By
making the width arbitrarily small, a monoenergetic distribu-To obtain the spectrum for the planar case, expressi®hs
tion may be approximated. Generation of quasimonoenerand(32) are inserted in Eqg5) and (6), yielding

Downloaded 11 May 2006 to 130.183.90.66. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



052704-5 Ultrashort-pulse laser plasmas:... Phys. Plasmas 12, 052704 (2005)

1
phericalR,= 5
1 MeV %
500 keV X
300 keV S
ol 0,1+ o
3 0
] \ @
\\ S
\ pla* B
0,015 300 keV Ny
0 50 100 150 0 200 400 600 800 1000 1200 1400

X Energy (keV)

FIG. 3. Transmitted electron fractions as a function of normalized distance . . .
from the target in planar and spherical geometry. Dimensionless target rd- G- 4. Electron energy spectra at dimensionless distaxied 0.25, 0.5,
dius Ry=5. Initial electron energy distributions are shifted Lorentzians with 2, 10 from the target. Planar and spherical geometry with dimensionless

maxima at 300 keV, 500 keV, and 1 MeV and full widths at half maximum {r9et radius?=5. Spherical geometry spectra are drawn dotted. Spectrum
: : .

(FWHM) of 30 keV, 50 keV, and 100 keV, respectively. or X: 1_0 is only shqwn for‘ planar geometry: The initial electron energy
distribution(at X=10) is a shifted Lorentzian with an energy of 500 keV at

its peak and a FWHM of 50 keV. The assymptotic spectrum for spherical
geometry is also show(dashed line termed spkp).

w T
U=U.+ —tan[—(l - Bg)] -meXé (34)
2 12 V. APPLICATION
and Apart from the possibility of calculating electron trans-
2U W 5 missions and electron distributions, the above theory allows
a

=—— meX. (35)  some general conclusions to be made. For example, in an
29 4 _so_[f] exponential distribution one notes that the number of elec-
co (1-B¢ o .

2 trons found beyond a certain distance from the target is not
proportional to the total number of electrons released but is
For spherical geometry, one obtains the formulas for calcureduced in relation to that number. This can be seen by ex-
lating electron escape fractions and electron spectra by inamining Eq.(22). Returning to physical quantities, one may
serting Eq.(31) into Eq. (17) and Egs.(31) and (32) into  write this equation ast/In £€=—(1/4mXNyr)kTo/mE. The
Egs.(18) and(19). This yields, for the escape fraction at the right-hand side is seen to be proportional tdN}./However,
normalized distanc, the term In¢ in the denominator of the left-hand side makes

the dependence af on N, somewhat weaker This is illus-
XRy/(Ry+ X) = {Uc + V—vtan{z(l - Bg)} }/gmcz. (36) fratedin Fig. 5, which g_ives the areal density of the eI_ectrons
2 2 as a function of the distance from the target for different

] ) initial areal densites.
The equations for the electron spectra are given by

w
U=U.+ Etan[g(l - Bg)] ~MEEXRY(Ry+X)  (37) ‘
10" 4 Exponential distribution —
kT_ =500 keV
and planar geometry
& _oww B

-7 -MAXRy(Ry+X). (39
i 4 e 757(1 -BY

10" 4

The asymptotic forms of these equations, Xor- o0, are ob- " —

tained by taking the ternXR,/ (Ry+X) to be equal tdR,. 10 e S
Examples of results for originally Lorentzian spectra are

given in Fig. 3, showing the fraction of electrons found be- 10" - - -

yond a normalized distanc® from the target. Figure 4 e = L o

shows the change in the electron spectrum with increasing x (um)

distance from the target for planar and Sphe”cal gec'metrB{:IG. 5. Areal density of the electrons as a function of the distance from the

The aSymthtiC spectrum obtained for spherical geometry igyget for the three total areal densitieshf=104 10 and 16° cri2.
also shown in the figure. Exponential distribution wittkT,=500 keV. The geometry is planar.
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) ) o ) FIG. 7. Asymptotic electron energy spectra of originally Lorentzian distri-
FIG. 6. Fraction of electron, escaping to infinity in spherical geometry as pytion in spherical geometry for different dimensionless target RgiThe

a function of electron temperature. The dimensionless ragfjus the emit-  original distribution is drawn dashdtermed “input). It is a shifted Lorent-

ting surface is used as a parameter viR§¥0.1, 0.5, 1, 2, 5, 10. zian with a peak energy and width of 500 keV and 50 keV, respectively.
Asymptotic spectra are shown for dimensionless target radii of 0.1, 0.25,
0.5, 1, and 2.

A most significant result of this theory is the prediction

that in spherical geometry a sizable fraction of the electrong,onoenergetic electron population “sits” on a large pedestal
escapes to infinity and the possibility to calculate that fracjof lower energy electrons. The total number of electrons

tion. The spherical geometry is approached in many experigmitied is reported to be about five to ten times that in the
ments since electron beams are usually generated at a smalhnoenergetic bunch. Screening by these electrons can rela-
spot and expand at a certain angle. The theory explains whiely easily be taken into account by reducing the normal-
in experiments electrons are seen at all at macroscopic di$;ation constanC in Eq. (28) by an appropriate screening
tances from the target. For an exponential electron energyscior s, Concomitantly, the maximum value §fmust also
distribution the fraction of electrons escaping from target ispe reduced by the same factor. With these modifications the
given by Eq.(24). As an example, this fraction is displayed gnajytical formulae for the Lorentzian energy distribution
in Fig. 6 as a function of electron temperature with the di-c4, siill be used and the electrons screening the quasimo-
mensionless radiuB, as a parameter. The figure shows thatnoenergetic pulse from the emitter are taken care of.
for small radii the majority of the elef:trons escapes from Figure 8 shows how an originally symmetric narrow
target at electron temperatures exceeding a few hundred keMjectron spectrum is altered after the electrons propagate a
An essential aspect for understanding experimental regertain distance away from the emitter. Quasimonoenergetic
sults is the observation that in spherical geometry the elecyjirarelativistic electrons with a peak energy of 80 MeV and
tron spectrum becomes invariant at a large distance from thg e\wHM of 4 MeV are assumed. The beam divergence is 10

target. If the target radius is too big, the asymptotic spectrumn a4 and a screening factor of 10 takes broadly distributed
only vaguely reflects the original spectrum of the source. The

influence of target radius on the asymptotic spectrum is il-
lustrated in Fig. 7, which shows asymptotic spectra of an
initially Lorentzian distribution as a function of the initial 0,016
target radius. It is seen that the smaller the target radius the
better conserved is the original spectrum.

A possible application of this theory relates to recent E 0io2+
experiments in which wakefield-accelerated quasimonoener- g

getic electron energy distributions were obserted’ In @ 0,008
these experiments some °1@lectrons with energies of %
Q

around 100 MeV and an energy spread of a few percent are

generated. The electron beams are well collimated, with an

angular divergence in the region of 10 mrad. The initial di-

ameter of the electron beams is aboutp®, resulting in an 0,000 —

areal densityN, of around 2x 104 cm2, 49 S5 6 70 & 9% 100
Applying the theory to these conditions, we note that the Ensrgy (MeX)

apparent radius, of a spherical emitter can be related to theFIG. 8. Electron spectrum of quasimonoenergetic ultrarelativistic electron

beam divergenceb and the initial beam diametet by the  population after propagating macroscopic distances from the emitter. Dis-

simple relationry=d/ ¢. A beam diameter of 2oim and a  tances are indicated in the figure. The spectrum label&ithe asymptotic

; : ; pectrum in spherical geometry. The areal electron densitN,js2
beam divergence of 10 mrad therefore result in an emlttef< 104 cm, the beam divergence 10 mrad. The original spectftarmed

radius 0fr0=2-5_mm- _ o _input) peaks at 80 MeV with a FWHM of 4 MeV. A screening factor of 10
A further point of consideration is the fact that the quasi-is assumed, which takes into account electrons at lower energies.

W 0,004
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lower energy electrons into account. It is seen that the origihigh energies may make this relatively simple theory useful,
nal spectrum is broadened and slightly shifted to lower ene.g., to assess the accuracy and feasibility of PIC simula-
ergies. However, after 10 cm of propagation an asymptotidions.

spectrum is already obtained. In planar geometry, however,

the change in the spectrum would be severe after a Separati‘l&KNOWLEDGMENT

of the bunch of only 1 cm from the emitter.
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