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Hot electrons generated upon interaction of ultrashort, intense laser pulses with solid targets have
many applications in various fields of physics. In this paper a simple theory is developed which
allows calculation of the fraction of electrons which escape from the target and the altered electron
energy distribution at a distance from the target. The theory is worked out in planar and spherical
geometry. It is exact if the electrons are instantaneously generated. In planar geometry all particles
eventually return to the target. In spherical geometry, however, a fraction of the electrons are found
to escape and, moreover, the electron energy spectrum at large distances approaches an asymptotical
one. Two examples of initial electron distributions are treated in detail, viz., an exponential and a
Lorentzian distribution. ©2005 American Institute of Physics. fDOI: 10.1063/1.1891025g

I. INTRODUCTION

The effect of hot-electron generation by interaction of a
high-intensity laser pulse with a solid target has received
considerable attention in recent years.1–7 This is because
laser-generated ultrashort electron bursts may have a number
of applications, such as in laser fusion, x-ray lasers, genera-
tion of ion beams, material science, and femtosecondsfsd
laser chemistry.

The emission of intense, ultrashort electron bunches
from a conductor into a vacuum exhibits interesting features.
While the electrons propagate into the vacuum region strong
electrostatic self-fields slow them down and eventually pull a
great part of them back to the target. At increasing distance
from the target fewer and fewer electrons are therefore ex-
pected to be observed. In addition, the energy distribution of
the electrons is expected to be significantly altered with re-
spect to the original electron spectrum.

In many experiments it is important to know what frac-
tion of the original electrons propagates beyond a certain
distance from the target and how the electron spectrum is
altered by the self-fields. For example, in irradiating samples
it is necessary to determine which kind of radiation—x rays
or electrons—dominates the dose received by the specimen:
This question arises in investigations for developing optics
for fourth-generation light sources, ultrashort-pulse x-ray dif-
fraction experiments, and pumping of x-ray lasers.8–10

A complete theoretical assessment of the effects men-
tioned above is only possible numerically, e.g., by means of
particle-in-cellsPICd simulations. It is shown here, however,
that for very short electron pulses the effect of the self-fields
can be treated with a relatively simple analytical theory. With
laser pulses in the 10 fs range becoming available in more
and more laboratories11 this analytical treatment is gaining
increasing relevance to experiments.

In previous work the analytical theory of an infinitely
short electron pulse was worked out in planar geometry. With
a Lagrangian coordinate for the electrons, the equation of
motion together with the Poisson equation was solved, and

particle trajectories, electron densities, escape probabilites,
and electron spectra were calculated.12–15

In spherical geometry the equation of motion together
with the Poisson equation cannot be solved analytically.
However, it will be shown that energy considerations allow
one to calculate the fraction of electrons propagating beyond
a certain distance from the target and derive the electron
spectrum. The result of these calculations shows that the
spherical case is quantitatively but alsoqualitativelydifferent
from the planar case. The spherical geometry relations trans-
form to those derived for planar geometry if the initial radius
of the electrons is made infinitely large.

The paper is organized as follows: Sec. II gives a short
account of the theory in planar geometry. In Sec. III the
theory is worked out in spherical geometry. In Sec. IV simple
analytical expressions are derived for two specific electron
energy distributions. In Sec. V the theory is applied to ex-
perimental situations.

II. INSTANTANEOUSLY RELEASED ELECTRONS
WITH ARBITRARY ENERGY DISTRIBUTION
IN PLANAR GEOMETRY

Consider a planar pulse of electrons instantaneously re-
leased from a conductor. The total areal density of the elec-
trons is Na and the coordinate in the direction of electron
propagation is denoted byx. A positive surface charge equal
to the charge of the electron cloud provides global charge
neutrality and makes the field zero in the conductor. Thus,
the field is zero in the conductor, sharply rises close to the
boundary to become positive at the surface itself, and then
slowly decays along the electron cloud to become zero again
at the outermost particle.

If electrons are instantaneously released they cannot
overtake each other and thus can be described by means of a
Lagrangian coordinatej which may be defined as
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jsUd =E
U

`

fsU8ddU8. s1d

Here U is the energy of the electrons andfsUddU is their
normalized energy distribution.jsUd ranges from 0 to 1
and gives the fraction of the electrons with an energyùU.

The higher the energy of the electrons the further they
will have propagated away from the conductor. Thus, the
Lagrangian coordinatej denotes the fraction of electrons that
have propagated further out from the target. If the total areal
density of electrons released from the target is given byNa,
then for an electron population with coordinatej the areal
density of electrons further out from the target is given by
jNa. The Poisson equation yields for the electric fieldE in
the vacuum region

E = 4pejNa, s2d

wheree is the elementary electric charge.
It follows from Eq. s2d that electrons with Lagrangian

coordinatej experience a constant decelerating force given
by −4pe2jNa and thus at a distancex from target the loss of
kinetic energy of that electron population is given by

DU = 4pe2jNax. s3d

A. Fraction of electrons propagating beyond a certain
distance from the target

In Refs. 14 and 15 the equation of motion of the elec-
trons is solved and the maximum distance is calculated by
requiring the velocity to be zero. However, the distance a
particular electron populationj can separate from the target
can simply be calculated by equating the energy loss to the
original energyUsjd. This yields, for the maximum distance
by which an electron with Lagrangian coordinatej moves
away from the target,

x = Usjd/4pe2jNa. s4d

Here Usjd is the inverse ofjsUd as defined in Eq.s1d. For
any electron energy distribution, Eq.s4d allows one to calcu-
late the fraction of electrons propagating beyond a distancex
from the target. In general, this must be done by numerically
integrating Eq.s1d and inverting it. However, simple alge-
braic relations are obtained for electron energy distributions
fsUd which can be integrated and the integral function of
which can be analytically inverted. This is exemplified in the
last part of the paper for an exponential and a Lorentzian
distribution.

B. Electron energy spectrum at a distance from the
target in planar geometry

The Lagrangian coordinate description allows calcula-
tion of the energy spectrum of the electrons at any distance
from the target: Since electrons with Lagrangian coordinatej
lose a kinetic energyDU=4pe2xjNa after they have propa-
gated a distancex away from the target, the remaining en-
ergy of these electrons is given by

U = U0 − 4pe2xjNa, s5d

whereU0 is the original energy of the electrons. Differenti-
ating with respect toj, one obtains

]U

]j
=

]U0

]j
− 4pe2xNa. s6d

Realizing from Eq.s1d that the fraction of electrons in an
energy intervaldU is given by −s]j /]UddU, one obtains the
energy spectrum of the electrons by varyingj from 0 to 1
and plotting −]j /]U=−1/s]U /]jd vs U from Eq.s5d. Again,
the equations become simple for integrable and invertable
electron energy distributionsssee Sec. IVd.

III. ELECTRON ESCAPE AND ELECTRON SPECTRUM
IN SPHERICAL GEOMETRY

Consider hot electrons escaping from a target in the form
of a sphere with radiusr0. In spherical geometry the Poisson
equationsthe first Maxwell equationd reads

]E

]r
+

2

r
E = 4pnee, s7d

wherer is the radial coordinate,ne is the local electron den-
sity, andE is the electric field. Integrating Eq.s7d with the
boundary condition that the field be zero at infinity yields for
the field at positionr

E =
4pe

r2 E
r

`

r82nedr8. s8d

This equation can, of course, be directly derived from
Gauss’s law in spherical coordinates. It states that for a cen-
trosymmetric system the field at any positionr depends only
on the total charge outsider and not on the radial distribution
of this charge. Again the Lagrangian coordinatej is defined
as the fraction of electrons found beyondr,

j =
4p

Ne
E

r

`

ner8
2dr8 s9d

whereNe, the total number of electrons, is given by

Ne = 4pE
r0

`

ner8
2dr8. s10d

Using Eq.s8d the field can now be expressed by the Lagrang-
ian coordinate as

Esrd = ejNe/r
2. s11d

The energy loss of electrons with Lagrangian coordinatej is
given by

DU = e2jNeE
r0

r dr8

r82 , s12d

which can be integrated to yield

DU = e2jNes1/r0 − 1/rd. s13d

Thus, an equation analogous to Eq.s5d for the fraction of
electrons propagating beyond a radiusr can be written down
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by equating the energy loss to the original energyUsjd, re-
sulting in

1/r = 1/r0 − Usjd/se2jNed. s14d

To relate the expressions for planar and spherical geometry
to each other, the total number of electronsNe is expressed
by the areal densityNa of electrons at the emitting sphere by

Ne = 4pr0
2Na. s15d

Equations14d now reads

1/r = 1/r0 − Usjd/s4pe2jr0
2Nad. s16d

This equation allows one to calculate the fraction of elec-
trons separating a certain distance from the target. Realizing
that the distance from the spherical target is given byx=r
−r0, one may write Eq.s16d as

xr0/sr0 + xd = Usjd/4pe2jNa. s17d

This form of the equation shows that in the limit that the
radius of the emitting sphere becomes infinite, Eq.s17d trans-
forms into the equation for the planar case: Forr0→`, the
term r0/ sr0+xd→1 and Eq.s17d transforms into Eq.s4d.

The spectrum of the electrons at any distancex from the
target can be calculated by analogy with the planar geometry.
Inserting s15d in s13d the energy loss is written asDU
=4pe2jNaxr0/ sr0+xd and the spectrum is again obtained by
varying j and plotting −s]U /]jd−1 vs U with

U = U0 − 4pe2jNaxr0/sr0 + xd s18d

and

]U

]j
=

]U0

]j
− 4pe2jNaxr0/sr0 + xd. s19d

Again, if the radius of the emitting sphere becomes infinite,
i.e., r0→`, then the equations transform to Eqs.s5d and s6d
of the planar case.

A remarkable difference in the spherical and the planar
cases arises if the distance from the target goes to infinity: In
the planar case all electrons eventually come back to the
target. This follows from Eq.s3d, which shows that at an
infinite distance from the target the energy loss becomes in-
finite. In spherical geometry, however, forx→` part of the
electrons escape from the target. From Eq.s17d, with x→`,
one obtains for their fractionj` the transcendental equation

Usj`d/s4pe2j`r0Nad = 1. s20d

Furthermore, in the planar case the energy spectrum of the
electrons continuously changes asx is increased. In the
spherical case, forx→` the factorxr0/ sr0+xd in Eqs. s18d
ands19d goes tor0 and thus at a large enough distance from
target the spectrum does not change any more. The
asymptotic spectrum is calculated by varyingj and plotting
−s]U /]jd−1 vs U with U=U0−4pe2jNar0 and ]U /]j
=s]U0/]jd−4pe2Nar0.

IV. SPECIFIC ELECTRON ENERGY DISTRIBUTIONS

In the following the formalism outlined above is applied
to two specific electron energy distributions, viz., an expo-
nential and a shifted Lorentzian distribution. These distribu-
tion functions can be integrated and the integral function can
be inverted, resulting in analytical formulae for the above
expressions.

The exponential distribution is the most common one
encountered in experimental work and derived in PIC simu-
lations. In experiments with solid targets it is found that the
electron distribution can be described by an effective tem-
perature, which for laser intensities in the range of
1018–1019 W/cm2 is 0.2–1 MeV.6

A Lorentzian distribution is useful in approximating dis-
tributions observed after the electrons have propagated
through a conducting solid. It can be further used to approxi-
mate quasimonoenergetic distributions observed in recent ex-
perimentsssee Sec. Vd.

To simplify the expressions, dimensionless units are
used in the following by introducing a normalizing distance
xn=s4preNad−1. Here re=e2/mc2=2.82310−13 cm is the
classical electron radius. As an example, at a typical experi-
mental areal density ofNa=1015 cm−2 one hasxn=2.8 mm.
The dimensionless distances and radii will be denoted byX
=x/xn andR=r /xn.

A. Exponential electron energy distribution

The normalized exponential distribution readsfsUd
=1/kTe exps−U /kTed, wherekTe is the electron temperature.
Inserting this in Eq.s1d and integrating yields

jsUd = exps− U/kTed, s21ad

which is inverted to

Usjd = − kTe ln j. s21bd

Inserting Eq.s21bd in Eq. s4d, one obtains for the normalized
maximum distance in planar geometry

X = −
kTe

mc2

ln j

j
. s22d

For X→` it is seen thatj goes to zero, indicating that no
electrons escape completely from the target.

In spherical geometry, with Eq.s21bd inserted in Eq.
s16d, the normalized maximum distanceX is found to be
given by

1

R0 + X
=

1

R0
+

1

R0
2

kTe

mc2

ln j

j
. s23d

Using this form of the equation, one can readily appreciate
that atX→` the value ofj does not become zero. A fraction
j` of the electrons escape from the target, a given by

ln j`

j`

= −
mc2

kTe
R0. s24d

Figure 1 shows transmitted electron fractions vs normalized
distance for several electron temperatures comparing planar
and spherical geometry. It is seen how in planar geometry the
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fraction of electrons continuosly decreases, whereas in
spherical geometry it approaches a constant value.

To calculate the electron spectrum in planar geometry,
Eq. s21bd is inserted in Eqs.s5d and s6d. The equations for
the spectrum become

U = − kTe ln j − mc2jX s25ad

and

−
]U

]j
= kTe/j + mc2X. s25bd

In the spherical case Eq.s21bd is inserted in Eqs.s18d and
s19d, yielding the equations for the spectrum

U = − kTe ln j − mc2jX
R0

R0 + X
, s26ad

−
]U

]j
= kTe/j + mc2X

R0

R0 + X
. s26bd

For X→` the spectrum approaches an asymptotical one
given by

U = − kTe ln j − mc2jR0, s27ad

−
]U

]j
= kTe/j + mc2R0. s27bd

Figure 2 shows electron energy spectra at various distances
for an original exponential distribution withkTe=500 keV.
The spectrum for the planar case is seen to change gradually
with distance, whereas the spectrum for spherical geometry
approaches an asymptotic form.

B. Shifted Lorentzian distribution

This distribution is symmetric around its maximum. By
making the width arbitrarily small, a monoenergetic distribu-
tion may be approximated. Generation of quasimonoener-

getic electrons was predicted by simulations16 and recently
observed in experiments.17–19 After some straightforward
calculation the normalized form of the shifted Lorentzian is
found to be

fsUd =
C

1 + 4
sU − Ucd2

w2

s28d

with the normalization constant

C = 4/spwBd, s29d

where B=1+s2/pdtan−1s2Uc/wd. In these equationsUc is
the energy of the maximum andw is the full width at half
maximumsFWHMd. Inserting Eq.s28d into Eq. s1d and in-
tegrating results in the relation

jsUd =
1

B
F1 −

2

p
tan−12sU − Ucd

w
G , s30d

which can be inverted to yield

Usjd = Uc +
w

2
tanFp

2
s1 − BjdG s31d

and

]U

]j
= −

wp

4

B

cos2Fp

2
s1 − BjdG . s32d

Using Eq.s31d in Eq. s4d the electron escape fraction for the
planar case is readily obtained as

X = HUc +
w

2
tanFp

2
s1 − BjdGJ/mc2j. s33d

To obtain the spectrum for the planar case, expressionss31d
and s32d are inserted in Eqs.s5d and s6d, yielding

FIG. 1. Transmitted electron fractions as a function of normalized distance
from the target in planar and spherical geometry. Dimensionless target ra-
dius R0=5. The initial electron energy distributions are exponential with
temperatureskTe=300 keV, 500 keV, and 1 MeV. For an areal electron
densityNa=1015 cm−2, X=100 corresponds to a distance of 280µm from
target andR0=5 corresponds to radius of the spherical emitter of 14µm.

FIG. 2. Electron energy spectra at three distances from the targetsdimen-
sionless,X=0, 1, 2, 10d. Planar and spherical geometry with dimensionless
target radiusR0=5. The initial electron energy distributionsat X=0d is ex-
ponential with a temperature of 500 keV. Spherical spectra are drawn dotted.
The asymptotic spectrum for spherical geometry is also shownsdashed line
termed sph.̀ d.
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U = Uc +
w

2
tanFp

2
s1 − BjdG − mc2Xj s34d

and

]U

]j
= −

wp

4

B

cos2Fp

2
s1 − BjdGmc2X. s35d

For spherical geometry, one obtains the formulas for calcu-
lating electron escape fractions and electron spectra by in-
serting Eq.s31d into Eq. s17d and Eqs.s31d and s32d into
Eqs.s18d ands19d. This yields, for the escape fraction at the
normalized distanceX,

XR0/sR0 + Xd = HUc +
w

2
tanFp

2
s1 − BjdGJ/jmc2. s36d

The equations for the electron spectra are given by

U = Uc +
w

2
tanFp

2
s1 − BjdG − mc2jXR0/sR0 + Xd s37d

and

]U

]j
= −

wp

4

B

cos2Fp

2
s1 − BjdG − mc2XR0/sR0 + Xd. s38d

The asymptotic forms of these equations, forX→`, are ob-
tained by taking the termXR0/ sR0+Xd to be equal toR0.

Examples of results for originally Lorentzian spectra are
given in Fig. 3, showing the fraction of electrons found be-
yond a normalized distanceX from the target. Figure 4
shows the change in the electron spectrum with increasing
distance from the target for planar and spherical geometry.
The asymptotic spectrum obtained for spherical geometry is
also shown in the figure.

V. APPLICATION

Apart from the possibility of calculating electron trans-
missions and electron distributions, the above theory allows
some general conclusions to be made. For example, in an
exponential distribution one notes that the number of elec-
trons found beyond a certain distance from the target is not
proportional to the total number of electrons released but is
reduced in relation to that number. This can be seen by ex-
amining Eq.s22d. Returning to physical quantities, one may
write this equation asj / ln j=−s1/4pxNaredkTe/mc2. The
right-hand side is seen to be proportional to 1/Na. However,
the term lnj in the denominator of the left-hand side makes
the dependence ofj on Na somewhat weaker This is illus-
trated in Fig. 5, which gives the areal density of the electrons
as a function of the distance from the target for different
initial areal densites.

FIG. 3. Transmitted electron fractions as a function of normalized distance
from the target in planar and spherical geometry. Dimensionless target ra-
dius R0=5. Initial electron energy distributions are shifted Lorentzians with
maxima at 300 keV, 500 keV, and 1 MeV and full widths at half maximum
sFWHMd of 30 keV, 50 keV, and 100 keV, respectively.

FIG. 4. Electron energy spectra at dimensionless distancesX=0, 0.25, 0.5,
2, 10 from the target. Planar and spherical geometry with dimensionless
target radiusR0=5. Spherical geometry spectra are drawn dotted. Spectrum
for X=10 is only shown for planar geometry. The initial electron energy
distributionsat X=10d is a shifted Lorentzian with an energy of 500 keV at
its peak and a FWHM of 50 keV. The assymptotic spectrum for spherical
geometry is also shownsdashed line termed sph.̀d.

FIG. 5. Areal density of the electrons as a function of the distance from the
target for the three total areal densities ofNa=1014, 1015, and 1016 cm−2.
Exponential distribution withkTe=500 keV. The geometry is planar.
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A most significant result of this theory is the prediction
that in spherical geometry a sizable fraction of the electrons
escapes to infinity and the possibility to calculate that frac-
tion. The spherical geometry is approached in many experi-
ments since electron beams are usually generated at a small
spot and expand at a certain angle. The theory explains why
in experiments electrons are seen at all at macroscopic dis-
tances from the target. For an exponential electron energy
distribution the fraction of electrons escaping from target is
given by Eq.s24d. As an example, this fraction is displayed
in Fig. 6 as a function of electron temperature with the di-
mensionless radiusR0 as a parameter. The figure shows that
for small radii the majority of the electrons escapes from
target at electron temperatures exceeding a few hundred keV.

An essential aspect for understanding experimental re-
sults is the observation that in spherical geometry the elec-
tron spectrum becomes invariant at a large distance from the
target. If the target radius is too big, the asymptotic spectrum
only vaguely reflects the original spectrum of the source. The
influence of target radius on the asymptotic spectrum is il-
lustrated in Fig. 7, which shows asymptotic spectra of an
initially Lorentzian distribution as a function of the initial
target radius. It is seen that the smaller the target radius the
better conserved is the original spectrum.

A possible application of this theory relates to recent
experiments in which wakefield-accelerated quasimonoener-
getic electron energy distributions were observed.17–19 In
these experiments some 109 electrons with energies of
around 100 MeV and an energy spread of a few percent are
generated. The electron beams are well collimated, with an
angular divergence in the region of 10 mrad. The initial di-
ameter of the electron beams is about 25µm, resulting in an
areal densityNa of around 231014 cm−2.

Applying the theory to these conditions, we note that the
apparent radiusr0 of a spherical emitter can be related to the
beam divergencef and the initial beam diameterd by the
simple relationr0=d/f. A beam diameter of 25µm and a
beam divergence of 10 mrad therefore result in an emitter
radius ofr0=2.5 mm.

A further point of consideration is the fact that the quasi-

monoenergetic electron population “sits” on a large pedestal
of lower energy electrons. The total number of electrons
emitted is reported to be about five to ten times that in the
monoenergetic bunch. Screening by these electrons can rela-
tively easily be taken into account by reducing the normal-
ization constantC in Eq. s28d by an appropriate screening
factor S. Concomitantly, the maximum value ofj must also
be reduced by the same factor. With these modifications the
analytical formulae for the Lorentzian energy distribution
can still be used and the electrons screening the quasimo-
noenergetic pulse from the emitter are taken care of.

Figure 8 shows how an originally symmetric narrow
electron spectrum is altered after the electrons propagate a
certain distance away from the emitter. Quasimonoenergetic
ultrarelativistic electrons with a peak energy of 80 MeV and
a FWHM of 4 MeV are assumed. The beam divergence is 10
mrad and a screening factor of 10 takes broadly distributed

FIG. 6. Fraction of electronsj` escaping to infinity in spherical geometry as
a function of electron temperature. The dimensionless radiusR0 of the emit-
ting surface is used as a parameter withR0=0.1, 0.5, 1, 2, 5, 10.

FIG. 7. Asymptotic electron energy spectra of originally Lorentzian distri-
bution in spherical geometry for different dimensionless target radiiR0. The
original distribution is drawn dashedstermed “input”d. It is a shifted Lorent-
zian with a peak energy and width of 500 keV and 50 keV, respectively.
Asymptotic spectra are shown for dimensionless target radii of 0.1, 0.25,
0.5, 1, and 2.

FIG. 8. Electron spectrum of quasimonoenergetic ultrarelativistic electron
population after propagating macroscopic distances from the emitter. Dis-
tances are indicated in the figure. The spectrum labeled` is the asymptotic
spectrum in spherical geometry. The areal electron density isNa=2
31014 cm−2, the beam divergence 10 mrad. The original spectrumstermed
inputd peaks at 80 MeV with a FWHM of 4 MeV. A screening factor of 10
is assumed, which takes into account electrons at lower energies.
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lower energy electrons into account. It is seen that the origi-
nal spectrum is broadened and slightly shifted to lower en-
ergies. However, after 10 cm of propagation an asymptotic
spectrum is already obtained. In planar geometry, however,
the change in the spectrum would be severe after a separation
of the bunch of only 1 cm from the emitter.

VI. CONCLUSION

The electrostatic fields generated by electron beams
themselves severely affect propagation of these beams away
from the target. The theory developed in this paper allows
calculation of the number of electrons propagating a certain
distance away from the target and the change in the electron
spectrum to be determined. It is found that in planar geom-
etry these changes are severe. However, in spherical geom-
etry, which may be approached in experiments by an expand-
ing beam, the changes are not so severe, with the spectrum
approaching an asymptotic one after a certain distance.

In applying the theory one has to keep in mind the re-
strictions imposed on it by the approximations made. Note
that the theory is exact and fully relativistic for the relevant
geometriessplanar and sphericald if the electrons are released
instantaneously. This condition is fulfilled the better the
shorter the pulse generating the electrons is. Furthermore,
one has to consider that only electrostatic effects are taken
into account by the theory, magnetic field effects being ne-
glected. In most cases, however, the electrostatic effects con-
sidered here are expected to dominate. The relative magni-
tude of the two can be assessed by comparing the electron
beam current to the Alfven currentIA=bg17 kA. Hereb and
g are the particle velocity divided byc and the relativistic
mass factor, respectively. With reference to the example in
the last section it is seen that magnetic effects are expected to
be negligible owing to the highg factor of the beam elec-
trons.

The possibility of obtaining quasianalytic expressions
for the electron transmission and the electron spectrum under
a wide variety of experimental conditions and even at ultra-

high energies may make this relatively simple theory useful,
e.g., to assess the accuracy and feasibility of PIC simula-
tions.
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