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Laser-plasma accelerators are expected to deliver electron bunches with high space charge fields.

Several recent publications have addressed the impact of space charge effects on such bunches after the

extraction into vacuum. Artifacts due to the approximation of retardation effects are addressed, which are

typically either neglected or approximated. We discuss a much more appropriate calculation for the case

of laser wakefield acceleration with negligible retardation artifacts due to the calculation performed in the

mean rest frame. This presented calculation approach also aims at a validation of other simulation

approaches.
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I. INTRODUCTION

Laser acceleration is a promising field in various aspects,
such as the miniaturization of the accelerator setup and the
availability of electron beams with high-current density.
The plasma wakefield acceleration in the bubble regime
was predicted in particle-in-cell simulations [1] and led to
rapid progress in various experiments [2–5].

The effect of the charge density on the electron beam
dynamics after the extraction into vacuum can be estimated
when considering the electromagnetic field energy [6] per
particle in the mean rest frame of the particle bunch,
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where N is the number of charged particles considered and
qi is the charge of the particle i at the position ~r0i. Within
the mean rest frame, the average electron velocity in the
longitudinal direction is at a minimum. For a large N, a
homogeneously charged sphere with a radius R scales as
u0f / Q2=R with Q being the total charge. Laser acceler-

ated electron beams yield normalized field energies un ¼
u0f=mec

2 which enter a regime which is far above the one

that can be reached by conventional accelerators. Space
charge effects in this regime have been examined under
various aspects; these are, for example, longitudinal wake-
fields [7,8], energy spreads introduced at the electron ex-
traction from the plasma [9], and the temporal
development of the induced energy chirp [10].

A frequently used method to calculate space charge
effects consists of simulations based on point-to-point
interactions (PPI). Numerical calculations based on PPI
are particularly exposed to artifacts if the calculation is
performed in the laboratory frame. This issue is discussed
in [11] explaining the artifacts in the way PPI simulations

commonly account for retardation: In the absence of the
knowledge on the particles 4D trajectory, retardation is
approximated by assuming constant velocities.
Consequently, the acceleration of the simulated particles,
i.e., the macroparticles during each finite time step, is
neglected. For the regime discussed here, these artifacts
are examined in detail. Much more appropriate results can
be obtained when the calculation is carried out in the mean
rest frame of the electron bunch using PPI. In this case, the
average velocities of the macroparticles are only weakly
relativistic and, consequently, the retardation artifacts are
minimized. This result is then discussed in comparison
with the PPI method performed in the laboratory frame
and the Poisson solver. These two approaches exhibit con-
siderable artifacts which manifest in different character-
istics of the longitudinal phase space. Therefore, the design
of experiments using laser accelerated electron beams
could possibly be misguided, especially tabletop free-
electron lasers [12], which crucially depend on the char-
acteristics of the longitudinal phase space. The calculations
here are performed using GPT [13]. The artifacts addressed,
however, are not specific to the GPT code, but can be found
in any code utilizing the PPI model.

II. COULOMB EXPANSION

The electron bunch considered here is cold and thus has
zero divergence and zero emittance. The initial bunch
configuration with a spatial Gaussian density distribution
in the laboratory frame has the rms values �x ¼ �y ¼
�z ¼ 1 �m, an initial kinetic energy given by the
Lorentz factor �0 ¼ 300, and a total charge of Q ¼ 1 nC
and, hence, results in a normalized field energy of un �
10%.
For obtaining a 4D trajectory, we have to make assump-

tions for the acceleration process: Within the plasma, any
expansion driven by the Coulomb forces is suppressed due
to the strong plasma fields. We can, hence, assume that the
bunch is in a Gaussian shape before leaving the plasma
accelerator in both relevant frames of reference, laboratory
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frame and the mean rest frame. The end of the plasma is
assumed to be a ‘‘sharp’’ edge behind which the expanding
effect of the Coulomb forces is suddenly switched on. This
means that only electrons that have crossed the boundary
take effectively part in the Coulomb interaction.

Mean rest frame

The mean rest frame for the case considered here is an
inertial frame of reference copropagating with the electron
bunch at the constant normalized velocity �0. Before the
Coulomb interaction is switched on, the Lorentz trans-
formation leads to a bunch prolongation of a factor of
�0. In this frame of reference, the Coulomb interaction
cannot set in instantaneously and globally. Instead, the
onset of the interaction starts at the front end of the bunch
and spreads towards the rear end. Note that the bunch
geometry in the mean rest frame leads to a transverse
expansion dominating over the longitudinal debunching.

Figure 1 shows Minkowski diagrams and particle dis-
tributions in the mean rest frame of the bunch. Figure 1(a)
illustrates the initial beam condition in the laboratory
frame and in the mean rest frame of the electron bunch
before leaving the wakefield accelerator. The bunch is

assumed to exhibit a Gaussian spatial density distribution
in both frames of reference. This state in the mean rest
frame is also shown in Fig. 1(b) using a PPI calculation.
Figure 1(c) illustrates the beam in the laboratory frame

and in the mean rest frame of the electron bunch at the time
t ¼ t0 ¼ 0, where the plasma boundary is at the center of
the bunch and moves at the constant velocity �pb ¼ ��0.

This center of the bunch is also determined to be at the
longitudinal position zero in both frames z ¼ z0 ¼ 0.
In general we can state that the calculation performed in

the laboratory frame does not require sophisticated as-
sumptions concerning the initial simulation conditions,
since the predominant transverse space charge interactions
can be assumed to set in instantaneously: The duration of
propagation of the plasma boundary in the laboratory
frame is ultrafast, which means that the shape of the bunch
does not significantly change during the propagation of the
boundary. Therefore, simulations yield the same results for
the cases of the electrostatic interaction being switched on
instantaneously and the moving of the boundary through
the bunch. Within the mean rest frame, however, the differ-
ent ways of coincidence cause a longitudinal bunch pro-
longation, which can be seen from Figs. 1(a) and 1(c).
Figure 1(d) shows the spatial electron density distribution
being altered while the plasma boundary is still within the
bunch. As a precondition, however, we can assume that the
bunch has the same spatial symmetry at the end of the
wakefield acceleration in both frames of reference, i.e., the
mean rest frame and the laboratory frame as shown in
Fig. 1(a). Since we have chosen a Gaussian density distri-
bution, we have a spatial point symmetry for the case
discussed here. The end of the acceleration distance is at
z ¼ 0, which requires the introduction of a constraint,
whereby the onset of the Coulomb interaction propagates
from the front end to the rear end of the bunch as shown in
Fig. 1(c).
The further evolution of the electron bunch calculated in

the mean rest frame is shown in the laboratory frame in
Fig. 2. The Lorentz transformation into the laboratory
frame is performed assuming constant velocity and is given
by

�xi ¼ �0
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where ziðz0iÞ is obtained using linear extrapolation in the
ðz; ctÞ space. A slice is a longitudinal subsection of the
bunch. The small slice energy spread can be explained
regarding the longitudinal phase space in the mean rest
frame [Fig. 2(b)]: Particles with the highest values of �0
originate from the regions with the highest initial electro-

FIG. 1. (Color) The electron bunch is shown schematically in
(a) at the end of the wakefield acceleration in its initial configu-
ration using a Minkowski diagram in the laboratory frame (red)
and the mean rest frame (blue). The spatial axis z is the
longitudinal propagation direction. The plasma boundary is
located in the laboratory frame at z ¼ 0 and in the mean rest
frame at z0 ¼ 0. p1, p2, and p3 are 4D trajectories corresponding
to the rear end, the center, and the front end of the bunch. Part
(b) shows the beam state using a PPI simulation performed in the
mean rest frame in correspondence with (a). The longitudinal
bunch position s0 is plotted against the normalized transverse
velocity �0

x with s0 ¼ 0 being the center of mass. Part (c) shows
the situation when half of the particles have left the plasma and
(d) correspondingly in the mean rest frame at t0 ¼ 0.
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static fields, i.e., in the longitudinal direction along the axis
around the center of the bunch and transversely from off
axis. In contrast to the laboratory frame, the bunch shape in
the mean rest frame changes significantly already during
the propagation of the plasma boundary [Fig. 1(d)]. The
off-axis electrons close to the boundary are predominantly
accelerated towards the rear (left) end of the bunch and
therefore pushing on-axis electrons towards the head as a
result of momentum conservation. Because of the Lorentz
transformation � ¼ �0�

0ð1þ �0�
0
zÞ for a particle at a

certain position s0, a larger value of �0 is reduced by a
negative value of �0

z and a smaller �0 is boosted by a
positive �0

z. Finally, particles with different values of �0
obtain virtually the same � in the laboratory frame, which
leads to the ‘‘gap,’’ i.e., the small slice energy spread for
electrons at a specific bunch position s as can be seen in
Fig. 2(a).

A symmetric particle distribution in the mean rest frame
would be obtained from the instantaneous onset of the
Coulomb interaction and is shown in Figs. 2(c) and 2(d).
The phase space does not yield the correlation described
above and, thus, the slice energy spread is larger.

III. COMPARISON OF CALCULATION
APPROACHES

The calculation of the space charge driven expansion is
examined using PPI according to [6,13,14]. The electro-

magnetic fields are calculated relativistically, where radia-
tion effects are neglected and retardation is treated in
accordance with the constant velocity approximation.
The Coulomb field of particle j acting on i is given in
the rest frame of j by

~E 0
j!i ¼

Q~r0ji
4��0j~r0jij3

; (3)

~r 0
ji ¼ ~rji þ

�2
j

�j þ 1
ð ~rji � ~�jÞ ~�j ¼ ~r0i � ~r0j; (4)

with Q being the charge of the macroparticles and ~r0ji
being the distance between the particles in the rest frame
of j. The Lorentz transformation of the electromagnetic
fields of particle j acting on i in the laboratory frame yields

~Ej!i ¼ �j

�
~E0
j!i �

�2
j

�j þ 1
ð ~�j � ~E0

j!iÞ ~�j

�
;

~Bj!i ¼
�j

~�j � ~E0
j!i

c
:

(5)

A tracking code [13] applying Eqs. (5) is used to calculate
the free drift of the considered electron bunch in vacuum.
Figure 3 compares results of different calculation methods
at a later point in time than Fig. 2. The appropriate calcu-
lation using PPI performed in the mean rest frame is shown
in the column I0 of Fig. 3. The results being Lorentz trans-
formed are shown in column I of Fig. 3. The slice energy
spread (column I of Fig. 3(c)) is larger compared to the one
shown in Fig. 2(a), because debunching effects on larger
propagation distances cause a longitudinal phase space as
displayed in Fig. 2(b) developing towards the one as in
Fig. 2(d). Column II of Fig. 3 shows the PPI calculation
performed in the laboratory frame. The difference in com-
parison with column I of Fig. 3 can be explained with
retardation artifacts due to the constant velocity approxi-
mation as described in [11]. A further method besides PPI
treating space charge is the application of Poisson solvers,
which evaluate the electrostatic space charge field in the
mean rest frame of the bunch, where magnetic fields are
neglected occurring due to relative velocities. The Lorentz
transformation into the laboratory frame introduces the
magnetic fields. In this respect, the Poisson solvers referred
to solve the equations of motion in the laboratory frame.
The calculation time using this method linearly scales with
the number of macroparticles and thus allows many more
macroparticles to be considered. We evaluated a calcula-
tion using PPI performed in the mean rest frame of the
bunch as it would be obtained from a Poisson solver by
using the fields

~E 0
j!i ¼

Q~r0ji
4��0j~r0jij3

; ~B0
j!i ¼ 0: (6)

We obtained virtually identical results for the example

FIG. 2. (Color) The further evolution of the bunch in Fig. 1 is
shown 3 ps later in the longitudinal phase space with the
calculations performed in the mean rest frame. Part (a) displays
the longitudinal phase space of the bunch transformed to the
laboratory frame using Eqs. (2). The slice energy spread yields
significantly smaller values than the total energy spread of the
bunch. This fact also leads to a gap in the phase space. The
reason for this property can be seen in (b), where the longitudinal
phase space is drawn with the longitudinal normalized velocity
color coded in the mean rest frame. The plasma boundary leads
to an asymmetric particle distribution in the mean rest frame.
The instantaneous onset of the Coulomb interaction in the mean
rest frame would lead to a symmetric particle distribution as
shown in (c) and (d) in a direct comparison after 0.7 ps of
expansion.
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bunch considered here comparing the cases utilizing
Eqs. (5) and utilizing Eqs. (6) in the mean rest frame.
Thus, the case examined here yields an appropriate treat-
ment with respect to the retardation artifacts when utilizing
a Poisson solver. However, the electromagnetic field being
obtained in the mean rest frame also requires the correct
consideration of the 4D trajectories of the bunch particles
as described above. The result of Poisson solvers assuming
instantaneous onset of the Coulomb interaction leads to a

longitudinal phase space [Fig. 2(c)], where the slice energy
spread within the laboratory frame is shown to be over-
estimated compared to the case of correct initial conditions
applied [Fig. 2(a)]. To our knowledge, the instantaneous
onset of the Coulomb interaction is assumed among the
vast majority of codes which are widely applied and which
utilize the method of a Poisson solver. In addition, more
realistic simulation scenarios might involve particle
bunches having a notable energy spread or divergence. In

FIG. 4. The solid line shows the kinetic energy. The dashed line shows the total energy which is the sum of kinetic energy and field
energy using Eq. (1). The calculations correspond to Fig. 3.

FIG. 3. (Color) Calculation of the vacuum expansion of the considered electron bunch is shown with the initial state as illustrated in
Fig. 1 after the propagation distance of 1.8 m corresponding to 6 ns in the laboratory frame or after 20 ps in the mean rest frame. The
center of mass is located at s ¼ 0 ¼ P

i�iðtÞsiðtÞ=Pi�iðtÞ. Panels in column I0 show the calculation with negligible retardation artifacts
in the mean rest frame and panels in column I show the Lorentz-transformed results [Eqs. (2)] in the laboratory frame. Column II
shows the PPI calculation performed in the laboratory frame and column III shows the calculation result corresponding to a Poisson
solver, both with instantaneous onset of the Coulomb interaction. The longitudinal spatial inner bunch position is plotted in the mean
rest frame (s0) and in the laboratory frame (s). Part (a) in column I0 shows the line charge density distribution, parts (b) and (c) in
column I0 show the bunch current. Both of these representations are proportional to the longitudinal particle density. Row (b) shows the
spatial particle density distribution with the transverse coordinate plotted in the mean rest frame (x0) and in the laboratory frame (x).
Row (c) shows the longitudinal phase space. The color coding is linear and equivalent to the one of parts (b) and (d) in Fig. 1.
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these cases, velocities in the mean rest frame might not
allow one to neglect the magnetic fields, where PPI codes
using Eqs. (5) being performed in the mean rest frame of
the bunch yield the least artifacts. Figures 2(c) and 2(d) and
column III of Fig. 3 show results as obtained from a
Poisson solver at a later point in time. Coulomb interaction
is considered in the mean rest frame and is assumed to set
in instantaneously. This wrong initial condition leads to the
difference compared to column I of Fig. 3. Considering
energy conservation for the example beam in Fig. 4 yields
the total energy being conserved in the case of the calcu-
lation performed in the mean rest frame of the electron
bunch and for the case using the Poisson solver.

IV. CONCLUSION

The method discussed allows the calculation of the
electron bunch evolution with negligible retardation arti-
facts in a space charge regime which could be reached by
laser acceleration. This calculation is performed in the
mean rest frame of the bunch, where the relative velocities
are only weakly relativistic. Moreover, the required
Lorentz transformation between the laboratory frame and
the mean rest frame is shown to be nontrivial, since as-
sumptions concerning the 4D trajectories of the particles of
the bunch have to be made. The result of this calculation is
compared with the results of two commonly applied meth-
ods, one using PPI performed in the laboratory frame and
one using a Poisson solver. For different reasons, both
approaches yield significant deviations concerning the
characteristics of the longitudinal phase space, which
could ultimately mislead the design of applications using
laser accelerated electron bunches: A PPI simulation per-
formed in the laboratory frame principally suffers from
retardation artifacts, which leads to the violation of energy
and momentum conservation and to a wrong spatial density
distribution. The temporal development of the energy chirp
within the longitudinal phase space is overestimated and,
thus, the examinations in [10] describe an upper boundary.
The artifacts obtained from the method of using a Poisson
solver as considered here have two causes. The first cause
originates from codes which solve the equations of motion
within the laboratory frame. This approach principally
suffers from a Lorentz transformation which has to be
done in every time step. Some implementations were found
to apply the Lorentz transformation for the longitudinal
spatial position by merely linearly stretching the bunch by
the Lorentz factor corresponding to the velocity of the
mean rest frame. Using zðz0Þ as in Eq. (2), instead, helps
improving the result. This transformation still assumes
constant velocity, which might introduce artifacts due to
the Coulomb driven bunch expansion. The second cause
for artifacts originates from not considering the propaga-

tion of the plasma boundary through the electron bunch
within the mean rest frame and thus, incorrect initial con-
ditions. These are, however, no principal problems in-
volved and, thus, appropriate results can be obtained
using a Poisson solver if three conditions are met: First,
the electrostatic space charge field in the mean rest frame
has to be calculated correctly (the solver might not con-
verge). Second, the equations of motion have to be solved
in the mean rest frame to avoid Lorentz transformations
(the beam line elements have to be transformed into the
mean rest frame only once). Third, the initial conditions
have to be considered correctly. Since the solver almost
scales linearly with the number of particles in terms of
CPU time, many more particles can be considered than
using the PPI model and thus could be the preferred
method. However, we have shown here that in the space
charge regime considered, one has to be thoughtful about
assumptions made. The PPI model only uses the Coulomb
interaction and is thus based on fundamental principles.
This model, applied as discussed here, is therefore recom-
mended for validating results of other calculation methods.
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